

Teaching Schedule Objectives of the course: To provide knowledge of fundamentals of point-set topology, algebraic topology. To establish the top problem and perform the mathematical analysis. Course Outcomes: Upon completion of the course, students shall be able to CO1: identify the concepts of distance between two sets, connectedness, denseness, compactness and separation axioms. CO2: know the two fundamental topologies: discrete and indiscrete topologies. CO3: provide the awareness of tools for students to carrying out advanced research work in pure mathematics. CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications.	Academic Year : 2019-20									
 Objectives of the course: To provide knowledge of fundamentals of point-set topology, algebraic topology. To establish the top problem and perform the mathematical analysis. Course Outcomes: Upon completion of the course, students shall be able to CO1: identify the concepts of distance between two sets, connectedness, denseness, compactness and separation axioms. CO2: know the two fundamental topologies: discrete and indiscrete topologies. CO3: provide the awareness of tools for students to carrying out advanced research work in pure mathematics. CO4: ability to establish the denseness of a given subset of a space. CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications. 	<u>Teaching Schedule</u>									
 problem and perform the mathematical analysis. Course Outcomes: Upon completion of the course, students shall be able to CO1: identify the concepts of distance between two sets, connectedness, denseness, compactness and separation axioms. CO2: know the two fundamental topologies: discrete and indiscrete topologies. CO3: provide the awareness of tools for students to carrying out advanced research work in pure mathematics. CO4: ability to establish the denseness of a given subset of a space. CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications. 	ological scenario for general									
 Course Outcomes: Upon completion of the course, students shall be able to CO1: identify the concepts of distance between two sets, connectedness, denseness, compactness and separation axioms. CO2: know the two fundamental topologies: discrete and indiscrete topologies. CO3: provide the awareness of tools for students to carrying out advanced research work in pure mathematics. CO4: ability to establish the denseness of a given subset of a space. CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications. 	problem and perform the mathematical analysis.									
 Collise outcomes: open completion of the course, students shall be able to Coll: identify the concepts of distance between two sets, connectedness, denseness, compactness and separation axioms. Coll: know the two fundamental topologies: discrete and indiscrete topologies. Coll: provide the awareness of tools for students to carrying out advanced research work in pure mathematics. Coll: ability to establish the denseness of a given subset of a space. Coll: formulate topology of a problem and resolve it using acquired knowledge of the topology. Coll: use embeddings to understand the digital topology and image processing applications. 										
 CO1: identify the concepts of distance between two sets, connectedness, denseness, compactness and separation axioms. CO2: know the two fundamental topologies: discrete and indiscrete topologies. CO3: provide the awareness of tools for students to carrying out advanced research work in pure mathematics. CO4: ability to establish the denseness of a given subset of a space. CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications. 										
 CO2: know the two fundamental topologies: discrete and indiscrete topologies. CO3: provide the awareness of tools for students to carrying out advanced research work in pure mathematics. CO4: ability to establish the denseness of a given subset of a space. CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications. 										
 CO3: provide the awareness of tools for students to carrying out advanced research work in pure mathematics. CO4: ability to establish the denseness of a given subset of a space. CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications. 										
 CO4: ability to establish the denseness of a given subset of a space. CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications. 										
CO5: formulate topology of a problem and resolve it using acquired knowledge of the topology. CO6: use embeddings to understand the digital topology and image processing applications.										
CO6: use embeddings to understand the digital topology and image processing applications.										
UnitSub UnitNo. of Lect.(s)TopicsReference Chapter/ Additional ReadingTeaching 	Activities Evaluation Parameter									
Unit 1: Topological Spaces										
[20]Topological space and examples, Relative topology and examples, continuity & convergenceTopological space and 	nswer of eacher after ethod and Unit Test -1									
1.24Open and closed sets with examples, Closure of a set, Neighborhood of a point, Interior point, limit pointIntroduction to Topology and Modern AnalysisChark & Talk uchark & Talkverified by teacher to 	resolve any Assignment-1									

Semester : VII		Integrated M.Sc. Mat	hematics	Academic Year : 2019-20			
				Subject : 060090701	1 Topology		
	1.3	4	Derived set with theorems and examples , Definition and examples of open base and open sub base			For Active Learner: Student will solve exercise given in book after completion of Unit.	
	1.4	4	First and second countable spaces with theorems and examples				
	1.5	4	Separable spaces with theorems and examples				
Unit 2	2: Comp	actness					T
[18]	2.1	5	Cover, Sub-cover, open cover, Basic and sub-basic open cover, sub cover, Countable open cover	Ch#4	Chalk & Talk	For Slow Learner: Students must write answer of question(s) given by teacher after completion of each method and	Unit Test -1 and 2 Assignment-1
	2.2	5	Continuity and compactness with theorems and examples	Introduction to Topology and Modern		verified by teacher to resolve any query of students.	
	2.3	4	Finite intersection property	Analysis		For Active Learner	
	2.4	4	Heine Borel property with theorems			Student will solve exercise given in book after completion of Unit.	
Unit 3	3: Produ	uct Spaces					
[12]	3.1	4	Definition and examples, Projection mappings and its continuity	Ch#4 George F. Simmons,		For Slow Learner: Students must write answer of question(s) given by teacher after	Unit Test 2
	3.2	4	Open and closed sub-base for product space	Introduction to Topology and Modern	Chalk & Talk	completion of each method and verified by teacher to resolve any	Assignment-2
	3.3	2	Tychonoff's theorem	Analysis		query of students.	

Semester : VII		Integrated M.Sc. Mathematics Subject : 060090701 Topology		Academic Year : 2019-20			
	3.4	2	Generalized Heine Borel theorem			For Active Learner: Student will solve exercise given in book after completion of Unit.	
Unit 4: Compactness for Metric Space							
[10]	4.1	3	Sequentially compact metric space		Chalk & Talk	For Slow Learner: Students must write answer of	
	4.2	2	Bolzano-Weierstrass property (BWP)	Ch#4 George F. Simmons, Introduction to		completion of each method and verified by teacher to resolve any	Internal Examination
	4.3	3	Totally bounded Space	Topology and Modern Analysis		for Active Learner:	Assignment-2
	4.4	2	Ascoli's theorem			Student will solve exercise given in book after completion of Unit.	

Text book:

1. George F. Simmons, Introduction to Topology and Modern Analysis, McGraw - Hill Book Co., 1963.

Reference books:

- 1. James R. Munkres, Topology, A First Course, Prentice Hall of India Pvt. Ltd., New Delhi, 2000.
- 2. J. Dugundji, Topology, Allyn and Bacon, 1966 (Reprinted in India by Prentice Hall of India Pvt. Ltd.)
- 3. K. D. Joshi, Introduction to General Topology, Wiley Eastern Ltd., 1983.
- 4. J. Hocking and G. Young, Topology, Addison-Wesley, Reading, 1961

Semester : VII

Integrated M.Sc. Mathematics Subject : 060090701 Topology Academic Year: 2019-20

Course Objectives and Course Outcomes Mapping:

- To provide knowledge of fundamentals of point-set topology and algebraic topology: CO1, CO2, CO3, CO4
- To establish the topological scenario for general problem and perform the mathematical analysis: CO5, CO6

Course Units and Course Outcomes Mapping:

Unit No.	Unit		Course Outcomes						
			CO2	CO3	CO4	CO5	CO6		
1	Topological Spaces	✓	✓	✓		✓	✓		
2	Compactness	✓		✓	✓	✓	√		
3	Product Spaces			✓		✓	√		
4	Compactness for Metric			1	1	1	1		
	Space								

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Semester : VII

Integrated M.Sc. Mathematics Subject : 060090701 Topology Academic Year : 2019-20

Programme Outcomes and Course Outcomes Mapping:

Programme Outcomes	Course Outcomes							
	CO1	CO2	CO3	CO4	CO5	CO6		
P01		√	✓			√		
P02	✓		✓					
P03				\checkmark	\checkmark			
P04			\checkmark			\checkmark		

